
Variablen- und Personenzentrierte Sichtweise auf Heterogenität einer Kurzskala im Large-Scale Assessment

Joerg-Henrik Heine ¹, Christine Sälzer ¹ & Christian Tarnai ²

In den meisten Large-Scale Studien ist der Raum für zusätzliche osychometrische Skalen begrenzt. Als Folge daraus werden meist Kurzskalen mit reduziertem Item-Umfang zur Erfassung zusätzlicher latenter Konstrukte eingesetzt. Aus variablenzentrierter Perspektive im Rahmen der Item Response Theorie (IRT) wird bei solchen Kurzskalen meist die Eindimensionalität der dahinterliegenden latenten Variablen postuliert. Die Überprüfung dieser a-priori-Annahme über eine vergleichende IRT-Skalierung mit ein- und mehrdimensionalen IRT-Modellen stellt vor dem Hintergrund der reduzierten Anzahl von Items, ohne zusätzliche theoriegeleitete Annahmen zu einer eventuell bestehenden Mehrdimensionalität, eine Herausforderung dar. Darüber hinaus besteht meist die Annahme einer, hinsichtlich der Skalierbarkeit, homogenen Personenstichprobe.

Die vorliegende Studie untersucht aus variablen- und personenzentrierter Perspektive die (Sub-)Dimensionalität einer Sechs-Item Skala zum Schulschwänzen (z.B. Sälzer, Heine & Prenzel 2014). Daneben wird die Homogenität der Personenstichprobe hinsichtlich ihres Antwortverhaltens untersucht.

Forschungsfrage 1 Die Faktorenanalyse der Rasch-Residuen aus der eindimensionalen Skalierung indiziert eine Subdimensionalität des Konstrukts Schulschwänzen. Die nebenstehende Abbildung zeigt die Ladungen auf der ersten Hauptkomponente (Y-Achse) der Items aus der Rasch-Residuen-Faktoren-Analyse (Linacre, 1998) gegen deren Schwierigkeiten (X-Achse) aus der eindimensionalen Skalierung geplottet. Hinsichtlich der Ladungen lassen sich vier Subdimensionen identifizieren. Sport ist das am ehesten geschwänzte Fach und hebt sich deutlich von den anderen Fächern ab. Mathe und Deutsch bilden als Hauptfächer

Die vierte Subdimension bildet sich als Konglomerat aus den naturwissenschaftlichen Fächern Physik, Chemie und Biologie. Schülerinnen und Schüler, welche eines dieser Fächer schwänzen, tun dies mit hoher Wahrscheinlichkeit auch in einem der anderen naturwissenschaftlichen Fächer. Forschungsfrage 2

- Identifikation von Item Heterogenität bzw. Subdimensionalität in der Kurzskala zum Schulschwänzen: Ist Schulschwänzen ein multidimensionales Konstrukt?
- Methodenvergleich zur Identifikation von Personenheterogenität in Bezug auf die Operationalisierung von Schulschwänzen

Stichprobe

- PISA 2012 Stichprobe der 15-jährigen Schüler und Schülerinnen in Deutschland (n = 5001 - Heine, Sälzer, Borchert, Siberns & Mang, 2013).
- 51 % weiblich, 14 % mit Migrationshintergrund Instrument

internationalen Schülerfragebogens.

Skala aus Fragen zum Schulschwänz-Verhalten in sechs Fächern (Mathe, Deutsch Physik Biologie, Chemie und Sport) als Teil des

Forschungsfrage 1 Eindimensionale IRT-basierte Paarvergleichs-Skalierung mit den sechs fachspezifischen Items zum Schulschwänzen mit dem R-Paket *pairwise* (Heine, 2014; Heine & Tarnai, 2015). Rasch-Residual-Faktor-Analyse (z.B. Wright, 1996; Linacre, 1998) zur Untersuchung der Item-Homogenität.

Überprüfung der Personen-Homogenität mit Forschungsfrage 2 Mixed-Rasch-Modellen (Rost, 1990; 1991) und der Konfigurationsfrequenzanalyse (z.B. Krauth & Lienert, 1973; Lienert, 1971; Stemmler, 2014) mit dem R-Paket *confreq* (Heine, 2015).

Deskriptive Ergebnisse – Kategorie-Häufigkeiten

Absolute Häufigkeiten der Antworten von Schülerinnen und Schülern zum Schulschwänzen: Die meisten Schülerinnen und Schüler schwänzen im Each Sport (n = 463)

In den anderen Fächern wird in etwa gleich häufig geschwänzt.

Insgesamt werden die Items in etwa ausgelassen -Missing-Rate von 21,4% bis 21,7%

Table 1: Absolute Häufigkeiten der Antworten von Schülerinnen und

	Missing	Score 0	Score 1	Score 2
Biologie	1083	3630	209	79
Chemie	1077	3593	243	88
Physik	1094	3617	192	98
Mathematik	1085	3572	214	130
Sport	1072	3203	463	263
Deutsch	1086	3632	191	92

Variablenzentrierte Analysen

jeweils eigene Subdimensionen.

Table 2: Relativer Modellvergleich: Partial-Credit-Modell und

	Log-Likelihood	Parameter	AIC	BIC	CAIC
1 Klasse	-6515,69	23	13077	13221	13244
2 Klassen	-6384,78	45	12860	13141	13186
3 Klassen	-6348,98	67	12832	13251	13318
4 Klassen	-6314,60	89	12807	13364	13453
5 Klassen	-6303,00	111	12828	13522	13633

- 1. Mixed-Rasch-Modell mit zwei latenten Klassen nach BIC und CAIC ist das am besten passende Modell (Tab. 2).
- 2. Zwei latente Klassen repräsentieren die Wahl eher mittlerer (Klasse 1) und extremer (Klasse 2) Antwortkategorien (vgl. Abb. 2 u. 3).

Personenzentrierte Analysen

- 1. Haupteffekt-KFA: 39 Typen und 58 Antitypen → Erwartungswidrige Antitypen (Tab. 3).
- 2. Funktionelle-KFA (Victor, 1989); Pattern 000000 und 222222 als Victor-Zellen (Tab. 4).

Table 3: Neun signifikante Pattern von insgesamt 97 aus Haupteffekt-

Pattern	f beobachtet	f erwartet	Тур	p exakter Binomial Test
000000	2855	2121,7233	+2	0,000000000
000010	260	301,3735	_1	0,000000000
000020	73	166,8318	_1	0,000000000
010000	36	137,8910	_1	0,000000000
000100	34	124,7364	_1	0,000000000
000001	26	107,8641	_1	0,000000000
100000	25	119,3247	_1	0,000000000
22222	24	0,0000	+2	0,000000000
001000	20	111,1690	_1	0,000000000

1) Antityp; 2) Typ.

Table 4: Signifikante Pattern aus funktionaler-KFA mit zwei Victor Zellen für sechs Items zum fachspezifischen Schulschwänzen.

Pattern	f beobachtet	f erwartet	Тур	Binomial Test
000000	2855	2855,0000	b ¹	-
000010	260	103,2850	+2	0,000000000
222222	24	24,0000	b^1	-
111111	13	0,1087	+2	0,000000000
111100	6	0,4221	+2	0,000005461
012221	4	0,0388	+2	0,000000091
102222	4	0,0114	+2	0,000000001
111121	3	0,0544	+2	0,000025693
111222	3	0,0091	+2	0,000000123
121212	3	0,0045	+2	0,000000015
222100	3	0,0099	+2	0,000000162
22212	3	0,0004	+2	0,000000000
22221	3	0,0006	+2	0,000000000
121201	2	0,0111	+2	0,000060757
122222	2	0,0008	+2	0,000000352
222111	2	0,0026	+2	0,000003269
Anmerkungen: Bonferroni adj. Alpha: α _{adj} = 0,00006858711;				
1) Victor Zelle - Funktionale KFA; 2) Typ.				

- 1. Forschungsfrage 1: Rasch-Residual-Faktor-Analyse ist ein geeignetes Verfahren zur Überprüfung der Item Homogenität einer Kurzskala.
- 2. Forschungsfrage 2:
 - 1. Häufigste, signifikante Pattern aus Haupteffekt-KFA (Pattern ,000000' und ,222222') charakterisieren die latente Klasse 2 der variablenzentrierten Analyse.
 - II. Variablenzentrierte Klassifikation der Personen aus inhaltlicher Perspektive evtl. irreführend, da Personen mit unterschiedlichstem Verhalten beim Schulschwänzen in einer latenten Klasse verortet werden, (Pattern ,000000' und ,222222' in Klasse 2 - vgl. Abb. 3).
 - III. (Mixed-)Raschmodell angemessen? unipolare Verhaltensdisposition mit natürlichem, absolutem Nullpunkt (kein Schwänzen) evtl. eher Modelle für Zähl-Daten anwenden,

irauth, J., & Lienert, G. A. (1973). Die Konfigurationsfrequenzanalyse (KFA) und ihre Anwendung in Psychologie und Medizin: ein multivariates nichtparam Aufdeckung von Typen und Syndromen; mit 70 Tabellen. Freiburg; München: Alber Karl.

Lienert, G. A. (1971). Die Konfigurationsfrequenzanslyse: I. Ein neuer Weg zu Typen und Syndromen. Zeitschrift für Klinische Psychologie und Psychotherapie, 19 Rost, J. (1990). Rasch Models in Latent Classes: An integration on Two Approaches to Item Analysis. Applied Psychological Measurement, 14(p. 271–282. Born. J. (1991). Alogicie mäture distribution model for psychothomous lien responses. British Journal of Mathematical and Statistical Psychology, 44(1), 75–92. Stemmier, M. (2014). Person-Centered Methods. Charm. Springer International Publishing. Stätzer, C., Heng. J. 41. Personal, M. (2014). Ohn registristigen Adhematikulterior Liene Kompetenz Der Zusammenharg von nathematikulterior Liene Kompetenz urgebristigen Unternichtbesuch. Vertrag gehalten auf dem Kongess der Schweizersichen Gesellschaft für Blädungsforschung 2014 in Luzen. Wirtykt, B. D. (1998). Ornparing Rasch measurement and factor vanjaks. Structura Expansion Modellery A Multidisciplinary Journal, 3(1), 3–24. Victor, N. (1989). An Alternativ Approach to Configural Frequency Analysis. Methodika, 3, 81–73.